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The standard cosmological model
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CMB observations
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Baryon acoustic oscillations

»  6dFGS
e SDSS MGS
SDSS DR7
WiggleZ
¢ BOSS Galaxy DR12
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Precision Cosmology

1
R —ngR+Agw =87GT

Planck Planck+lensing Planck+WP

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Quh oo 0.022068  0.02207 £ 0.00033  0.022242  0.02217 £ 0.00033  0.022032  0.02205 + 0.00028
QI e, 0.12029 0.1196 + 0.0031 0.11805 0.1186 + 0.0031 0.12038 0.1199 + 0.0027
10060ve oot 1.04122  1.04132+0.00068  1.04150  1.04141 £0.00067  1.04119  1.04131 + 0.00063
Pl isa S cr 0.0925 0.097 + 0.038 0.0949 0.089 +0.032 0.0925 0.089:“0':8: 1
e R R 0.9624 0.9616 + 0.0094 0.9675 0.9635 + 0.0094 0.9619 0.9603 + 0.0073
TR L 15 Ep— 3.098 3.103+0.072 3.098 3.085 £ 0.057 3.0980 3.089f1::8§;




What Is dark energy?

Dark Matter

Dark Energy




Dark Energy VS Modified Gravity

Dark Energy
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Geometry/modified gravity



Peculiar motion of galaxies

cz = Hor + vy,

overdensity
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Large Scales



Peculiar motion of galaxies

Real Space Redshift Space




Redshift space distortions

/"? Hawkins et al. (2002), astro—ph/0212375
9 /’L 2dFGRS: g = 0.49 + 0.09
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Two-point correlation function



Testing gravity using RSD Is challenging!

» Galaxy bias
 Effects of Baryons
* Observational Systematics

 Genuine Tests



Outline

* Theory

* Observation



THEORY



Galaxies, tracers of dark matter?
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Galaxy Bias




The selection bias

Observation limitations
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Luminosity Dependence

The selection bias

Color Dependence
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The impact of baryons

o AGN feedback changes the underlying distribution of the
cold dark matter on small scales.
o AGN feedback changes halo mass function as well
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Dark matter halos

Main subhalos
Subhalos




Galaxies are tracers of halos

Halo catalog Galaxy catalog
Halo 1 galaxy 1
Halo 2 E galaxy 2
Halo 3 galaxy 3
Halo 4 (el galaxy 4
Halo 5 ‘_’ galaxyb
Halo 6 ‘_’ galaxy 6
Halo 7 ‘_} galaxy 7
Halo 10 galaxy 100
Halo 10 galaxy 101

Which property?



Dark matter accretion history

vpeak ——————————




Stellar mass and gas mass accretion history

o Dark matter can be striped
after Vy,qx due to

gravitational tidal force
o Gas component can be
more easily striped due to
both tidal force and non-
gravitational interactions.
o After Vyeqy , stellar mass

can grow due to the
remaining star forming.
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Stellar mass and gas mass accretion history

o The disruption of dark matter is prevalent
o However, most galaxies can still gain stellar mass after

accretion
EAGLE lllustris HlustrisTNG
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I09 1O(Mstar[Moh _2])

Galaxy properties Pre-disruption

* Stellar mass-V,,., relation from hydrodynamical
simulations
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Stellar mass evolution

o The specific star forming rate of the main sequence galaxies
IS nearly a constant
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Modelling stellar mass evolution

The scaling relation at different redshifts can be normalized using a
simple evolution model
M, of a galaxy at the epoch of V.4 1S Only a function of
(Vpeak, redshift)
The intrinsic scatter 1s very small
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Post-disruption V,eqr — M, (z = 0)relation
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Halo catalogue Galaxy catalogue

galaxy 1

Halo 2 galaxy 2
Halo 3 galaxy 3
Halo 4 {—} galaxy 4
Halo 5 ‘_} galaxy5
Halo 6 H galaxy 6
Halo 7 H galaxy 7
Selection
Halo 100 * galaxy 100
IR i Halo‘lol-s -~ i~ i ga-laxy 101 h T T T Ly P A

Randomly matching due to scatter

Only samples around the threshold are affected by scatters



The impact of scatter on clustering

« The impact of scatter can be mitigated by high number densities
« High number density samples are less affected by scatter
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The impact of baryons on the absolute positions
and motions of subhalos

* From the EAGLE simulation, baryon physics has a limited impact
on the positions of sub-halos on scales » > 1Mpc/h

Real space clustering Redshift space clustering
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The impact of baryons on the absolute positions
and motions of subhalos

. . . 15
u iy [h/Mpc]

Hellwing et. al. 2016



Stellar mass function in hydro-
dynamic simulations

I[Hustris and Hlustris TNG
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Baryon physics Is constrained by stellar mass

function
» The Impact of baryons on — —
the dark matter clustering sl z=00 — TNG300
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Abundance Matching

« Abundance matching does not have galaxy bias

* The shape of stellar mass function can put constraints on baryon
physics!!

 Baryon physics in modified gravity models should be reasonable
ACDM f(R)

Halo mass function
SN feedbac

-
-
.......
- -
-
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+ AGN
(eedbac

log(mass)
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NYU Value-Added Galaxy Catalog

VAGC is based on the
SDSS 7 main galaxy sample

Relative photometric
calibration which uses the
same objects in overlaps
(good ~1%)

BBRIGHT sub-sample with
a uniform r-band SDSS
Petrosian apparent
magnitude limit r<17.60

Without corrections for fibre
collisions
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Systematics In stellar mass

Stellar initial mass function (IMF)

Difficult to accurately determine the total flux of a galaxy from the
Image data (aperture effect, background subtraction, dust extinction)

Different methods (e.g. photometric template fit, a combination of
spectroscopy and photometry, a single-color based estimator)

-IEE
Template-fit + Chabrier IMF 0 *T%‘Sﬂ*;ﬂf N

. 10°L
Single-colour + Kroupa IMFE :

Single-colour GAMA

Spectroscopy+UV+IR Chabrier IMF

log(M.) [My/h’]



Volume-limited sample complete in stellar mass

Systematics due to aperture A single-colour (Petrosian) estimator
SDSS model VS Petrosian log,o(M./[h™*Mo))
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5%&0,2,4lh~*Mpc]?

150

100

Galaxies ranked by stellar mass
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The fraction of common galaxies

N. yang / N. vagc

99.5%
95.4%
86.8%
89.1%
83.5%




Fiber Collisions

SDSS plate

The positions of two fibres
cannot be paced closer than
55” in SDSS-I and (DR 7).
62°° in SDSS-I1I.
Spectrograph ' - \ z~ 0.1 .

55/ wmmp0.1h~ " Mpc




Fiber collisions mitigation

@ \With Redshift

7 flux-limited <% Without Redshift

Volume-limited Hs = J/S
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.
LS ‘%
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.0 .0
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1
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Wide-angle and geometry effects

 Parallel approximation does not work for wide-angle galaxy pairs

« RSD is also affected by survey geometries!! Galaxy pairs within a
certain range of angle might be lost due to the survey geometries.

90°
Missing pairs due to geometry

180°- .- ionnn

270°



SHAM mock

..................

------------

400Mpc/h

400Mpc/h

Multidark Planck simulation
Boxsize: 400Mpc/h
38403 particles

Mass resolution:9.6 x 10’Mq/h



SHAM mock

 |In order to address the wide-angle and geometry effects, a SHAM
mock IS necessary.

« The SHAM mock has the same geometry as the real data.

SHAM mock (n_g=0.005) Real Data
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Theory VS Observation



TP _1Mpc]

20—

Theory VS Observation
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Theory VS Observation

No free parameter!!!
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Modified Gravity

S = ! fdx‘*f(R)

2K 2



Horndeski

Why f(R)?
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Effective density field in f(R) gravity
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Galaxy formation in f(R) gravity

Effective halo

f(R) ——  ACDM

mapping



Effective halo catalogue
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Effective halo catalogue

Adiabatic hydro-dynamical simulation
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Effective halo catalogue

[lustris TNG full baryonic physics
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SHAM predictions In f(R) gravity
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Screening mechanism in f(R) gravity
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The robustness of RSD predictions
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Conclusions

LCDM iIs good!

Don’t mess with Einstein!



Thank you!



