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The standard cosmological model



CMB observations



Baryon acoustic oscillations
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Precision Cosmology



What is dark energy?



Dark Energy VS Modified Gravity

Dark Energy 

Geometry/modified gravity 



Peculiar motion of galaxies



Peculiar motion of galaxies

Real Space Redshift Space



Redshift space distortions

Two-point correlation function



Testing gravity using RSD is challenging!

• Galaxy bias

• Effects of Baryons

• Observational Systematics

• Genuine Tests
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Outline

• Theory

• Observation
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THEORY



Galaxies, tracers of dark matter?
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Galaxy Bias
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Galaxies

Dark Matter



The selection bias
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Observation limitations



The selection bias
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Luminosity Dependence Color Dependence

Zehavi, et al 2004



The impact of baryons
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 AGN feedback changes the underlying distribution of the 

cold dark matter on small scales.

 AGN feedback changes halo mass function as well

Puchwein et al (2013) Mark Vogelsberger et al (2013)



Dark matter halos
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Main subhalos
Subhalos



Halo catalog Galaxy catalog
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Galaxies are tracers of halos

Which property?



Dark matter accretion history

𝑣𝑐𝑖𝑟

z

𝑣𝑝𝑒𝑎𝑘

𝑣𝑝𝑒𝑎𝑘



Stellar mass and gas mass accretion history

 Dark matter can be striped 

after 𝑉𝑝𝑒𝑎𝑘 due to 

gravitational tidal force

 Gas component can be 

more easily striped due to 

both tidal force and non-

gravitational interactions.

 After 𝑉𝑝𝑒𝑎𝑘 , stellar mass 

can grow due to the 

remaining star forming. 

𝑉𝑝𝑒𝑎𝑘

DM disruption

Gas disruption

Stellar Mass

Jonas Chaves-Montero, et al 2015



Stellar mass and gas mass accretion history

 The disruption of dark matter is prevalent

 However, most galaxies can still gain stellar mass after

accretion

He, MNRAS 2019



• Stellar mass-𝑉𝑝𝑒𝑎𝑘 relation from hydrodynamical 

simulations

Galaxy properties Pre-disruption 

He, MNRAS 2019



Stellar mass evolution

 The specific star forming rate of the main sequence galaxies 

is nearly a constant

He, MNRAS, 2019



Modelling stellar mass evolution

 The scaling relation at different redshifts can be normalized using a 

simple evolution model 

 𝑀∗ of a galaxy at the epoch of 𝑉𝑝𝑒𝑎𝑘 is only a function of 

𝑉𝑝𝑒𝑎𝑘 , 𝑟𝑒𝑑𝑠ℎ𝑖𝑓𝑡

 The intrinsic scatter is very small

log10𝑀 z0 = log10𝑀 z + 𝛼𝑧

He, MNRAS 2019



Post-disruption 𝑉𝑝𝑒𝑎𝑘 −𝑀∗(𝑧 = 0)relation 

He, MNRAS, 2019
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Halo catalogue Galaxy catalogue
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Selection
Halo 100

Halo 101

galaxy 100

galaxy 101

Only samples around the threshold are affected by scatters 

Randomly matching due to scatter
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The impact of scatter on clustering

• The impact of scatter can be mitigated by high number densities

• High number density samples are less affected by scatter

He, MNRAS, 2019



30
Jonas Chaves-Montero, et al 2015

The impact of baryons on the absolute positions 

and motions of subhalos

• From the EAGLE simulation, baryon physics has a limited impact 

on the positions of sub-halos on scales  
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The impact of baryons on the absolute positions 

and motions of subhalos

Hellwing et. al. 2016



Stellar mass function in hydro-

dynamic simulations

Illustris and Illustris TNG EAGLE



Baryon physics is constrained by stellar mass 

function 

 The impact of baryons on 

the dark matter clustering 

depends on the modeling 

of baryon physics

 But observations can put 

strong constraints on 

baryon physics.

 It seems that if different 

galaxy formation models 

can reproduce the same 

stellar mass function, the 

impacts of baryons on the 

dark matter clustering are 

very similar
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Abundance Matching

• Abundance matching does not have galaxy bias

• The shape of stellar mass function can put constraints on baryon 

physics!!

• Baryon physics in modified gravity models should be reasonable
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DATA
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• VAGC is based on the 

SDSS 7 main galaxy sample

• Relative photometric 

calibration which uses the 

same objects in overlaps

(good ~1%)

• BBRIGHT sub-sample with 

a uniform r-band SDSS 

Petrosian apparent 

magnitude limit r<17.60

• Without corrections for fibre

collisions 

NYU Value-Added Galaxy Catalog



Systematics in stellar mass
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• Stellar initial mass function (IMF)

• Difficult to accurately determine the total flux of a galaxy from the 

image data (aperture effect, background subtraction, dust extinction)

• Different methods (e.g. photometric template fit, a combination of 

spectroscopy and photometry, a single-color based estimator)

Single-colour + Kroupa IMF

Template-fit + Chabrier IMF

Spectroscopy+UV+IR Chabrier IMF

Single-colour GAMA
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Volume-limited sample complete in stellar mass

Systematics due to aperture  

SDSS model VS Petrosian 

magnitude 

photometric template-fit

Chabrier IMF Yang07

A single-colour (Petrosian) estimator

Kroupa IMF
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Galaxies ranked by stellar mass

He. et. al. 2018
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5% YANG 8%

VAGC

The fraction of common galaxies



Fiber Collisions
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plate

Spectrograph

The positions of two fibres

cannot be paced closer than 

55” in SDSS-I and II(DR 7). 

62’’ in SDSS-III.

SDSS
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With Redshift

Without Redshift

z2

z1

flux-limited

Volume-limited

Fiber collisions mitigation
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Wide-angle and geometry effects

• Parallel approximation does not work for wide-angle galaxy pairs 

• RSD is also affected by survey geometries!! Galaxy pairs within a 

certain range of angle might be lost due to the survey geometries.

z1 z2

Missing pairs due to geometry 
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SHAM mock

400Mpc/h 400Mpc/h

 Multidark Planck simulation

 Boxsize: 400Mpc/h

 38403particles

 Mass resolution:9.6 × 107M⊙/h
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SHAM mock (n_g=0.005)  Real Data

SHAM mock

• In order to address the wide-angle and geometry effects, a SHAM

mock is necessary.

• The SHAM mock has the same geometry as the real data.
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Theory VS Observation
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Theory VS Observation
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Theory VS Observation

No free parameter!!! 

He. et. al. 2018



Modified Gravity

𝑠 =
1

2𝜅2
න𝑑𝑥4 𝑓 𝑅



Why 𝑓 𝑅 ?

The speed of gravitational wave
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cdm

𝑓 𝑅

Massless particle Massive particle

𝑑𝑠2 = − 1 + 2𝜓 𝑑𝑡2+ 1 + 2𝜙 𝑑𝑥2

Φ− =
𝜓 − 𝜙

2
Φ+ =

𝜓 + 𝜙

2



Effective density field in 𝑓(𝑅) gravity

He, et al PRD 2015

Φ+ =
𝜓 + 𝜙

2
= 4𝜋𝐺𝛿𝜌𝑒𝑓𝑓

Φ− =
𝜓−𝜙

2
= 4𝜋𝐺𝛿𝜌𝑚

Dynamical Mass

Lensing Mass

𝑓𝑅0 = −10−6



Galaxy formation in 𝑓(𝑅) gravity

𝑓 𝑅

Effective halo 

mapping

𝛬CDM



Effective halo catalogue

He, et al PRL 2015

Φ+ = 4𝜋𝐺𝛿𝜌𝑒𝑓𝑓

𝑣𝑐𝑖𝑟 =
𝐺𝑀𝑒𝑓𝑓

𝑟

𝜎𝑣
2~ Φ+



Effective halo catalogue

He, et al PRD 2015

Adiabatic hydro-dynamical simulation



Effective halo catalogue

 Illustris TNG full baryonic physics

 F6 Illustris TNG full baryonic physics
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SHAM predictions in 𝑓(𝑅) gravity



Screening mechanism in 𝑓(𝑅) gravity



The robustness of RSD predictions

He. et. al. 2018



Final Results

He. et. al. 2018



Conclusions 
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LCDM is good!

Don’t mess with Einstein!



Thank you!


